Kubernate

Design - step-by-step modernization plan for your ABC Core Banking Application (Java, On-Prem, DB-centric)

 Below is a clean, modern, step-by-step modernization plan for your ABC Core Banking Application (Java, On-Prem, DB-centric) with a target architecture + tech stack + design explanation.

I’ll keep it practical and interview-ready, not theoretical.


1️⃣ Current State (As-Is – Problems)

Architecture

  • Java Monolith (On-Prem)

  • Tight DB coupling

  • REST interfaces directly hitting core DB

  • Near-real-time DB sync (Partner & Regional)

  • File-based batch integration for Partner (Req-3)

Key Issues

  • ❌ Hard to scale (vertical scaling only)

  • ❌ DB sync is risky & tightly coupled

  • ❌ File-based batch = latency + failure handling pain

  • ❌ Slow partner onboarding

  • ❌ No observability, limited fault tolerance


2️⃣ Target State (To-Be – Modernized Architecture)

๐ŸŽฏ Modernization Goals

  • Decouple core banking from partners

  • Near-real-time event-driven data flow

  • Horizontal scalability

  • Zero DB sharing

  • Cloud-ready (even if still On-Prem initially)


3️⃣ Proposed Modern Architecture (High Level)

            ┌──────────────┐
            │  Channels    │
            │ (Web / App)  │
            └──────┬───────┘
                   │
            ┌──────▼───────┐
            │ API Gateway  │
            │ (Auth, Rate) │
            └──────┬───────┘
                   │
     ┌─────────────▼─────────────┐
     │ Core Banking Microservices │
     │ (Account, Txn, Customer)  │
     └──────┬─────────┬─────────┘
            │         │
     ┌──────▼───┐ ┌──▼────────┐
     │ Kafka    │ │ DB (Own)  │
     │ Event Bus│ │ Per MS    │
     └──────┬───┘ └───────────┘
            │
   ┌────────▼─────────┐
   │ Partner Adapter  │
   │ (Async Consumers)│
   └──────┬───────────┘
          │
 ┌────────▼───────────┐
 │ External Partners  │
 └────────────────────┘

4️⃣ Modernization by Requirement


✅ Req-1: REST Interface (Modernized)

Before

  • REST → Core DB directly

After

  • REST → API Gateway → Microservices

Tech Stack

  • Spring Boot 3

  • Spring WebFlux (non-blocking)

  • OpenAPI (Swagger)

  • OAuth2 / Keycloak

Benefits

  • Security centralized

  • Rate limiting

  • API versioning

  • Easier partner exposure


✅ Req-2: Partner & Regional – Near Real-Time DB Sync

Stop DB-to-DB sync

Modern Solution: Event-Driven Architecture

Flow

Core Service → Publish Event → Kafka → Partner Consumer

Example Event

{
  "eventType": "ACCOUNT_UPDATED",
  "accountId": "12345",
  "timestamp": "2025-12-19T10:30:00"
}

Tech Stack

  • Apache Kafka

  • Debezium (CDC – optional)

  • Avro / JSON schema registry

Benefits

  • No DB sharing

  • Near real-time

  • Replayable events

  • Loose coupling


✅ Req-3: Partner – Horizontal (File-Based → Modern)

Before

  • Batch file drops

  • Manual retries

  • Time-based processing

After (Two Options)

๐Ÿ”น Option-A: Event-Driven (Recommended)

  • Kafka consumer pushes data to partner

  • Retry + DLQ support

๐Ÿ”น Option-B: Managed Batch (If File Mandatory)

  • Spring Batch

  • S3 / NFS as staging

  • Metadata tracking

Tech Stack

  • Spring Batch

  • Kafka Connect (if needed)

  • SFTP replaced by APIs where possible


5️⃣ Database Modernization

OldNew
Shared DBDB per Microservice
Oracle onlyPostgreSQL + Oracle
DB syncEvent propagation

Optional

  • Redis (cache)

  • Read replicas for reporting


6️⃣ Infrastructure & Platform

Phase-1 (On-Prem Friendly)

  • Docker

  • Kubernetes (OpenShift / Rancher)

  • Helm

Phase-2 (Hybrid / Cloud)

  • AWS EKS / Azure AKS

  • RDS / Aurora

  • MSK (Kafka)


7️⃣ Observability & Ops (Very Important)

Add

  • Prometheus (metrics)

  • Grafana (dashboards)

  • ELK / OpenSearch (logs)

  • Jaeger (distributed tracing)

Why

  • Faster issue detection

  • SLA monitoring

  • Partner failure isolation


8️⃣ Security Model

  • API Gateway → OAuth2 / JWT

  • mTLS between services

  • Secrets via Vault

  • Audit logs (mandatory for banking)


9️⃣ Migration Strategy (Safe & Incremental)

Strangler Pattern

  1. Keep monolith running

  2. Extract one service (Account)

  3. Route traffic via API Gateway

  4. Publish events from monolith

  5. Gradually decommission legacy


10️⃣ Tech Stack Summary

LayerTechnology
BackendJava 17, Spring Boot 3
APIREST + OpenAPI
MessagingKafka
DBPostgreSQL / Oracle
BatchSpring Batch
CacheRedis
ContainerDocker
OrchestrationKubernetes
ObservabilityPrometheus, Grafana
SecurityOAuth2, Keycloak

11️⃣ Interview-Ready One-Liner

“We modernized the core banking system by decoupling DB-centric integrations into an event-driven microservices architecture using Kafka, API Gateway, and containerized Spring Boot services, enabling horizontal scalability, near real-time partner sync, and improved fault tolerance.”


If you want, I can:

  • ๐Ÿ“Œ Draw text-based architecture diagrams

  • ๐Ÿ“Œ Create PPT / PDF for management

  • ๐Ÿ“Œ Map this to TOGAF / Banking reference architecture

  • ๐Ÿ“Œ Convert into resume / interview answers

Just tell me ๐Ÿ‘

No comments:

Post a Comment

Spring Boot - Bean LifeCycle

 Here is a clear, step-by-step lifecycle of a Spring Boot application , explained in a simple + interview-ready way. ๐Ÿ”„ Spring Boot Applica...

Kubernate